
Quoting in Linux
There are three types of quotes used by the Bash shell: single quotes ('), double quotes (") and back
quotes (`). These quotes have special features in the Bash shell as described below.

To understand single and double quotes, consider that there are times that you don't want the shell
to treat some characters as special. For example, the * character is used as a wildcard. What if you
wanted the * character to just mean a literal asterisk?

 Single ' quotes prevent the shell from "interpreting" or expanding all special characters.
Often single quotes are used to protect a string (a sequence of characters) from being
changed by the shell, so that the string can be interpreted by a command as a parameter to
affect the way the command is executed.

 Double " quotes stop the expansion of glob characters like the asterisk (*), question mark
(?), and square brackets ([]). Double quotes do allow for both variable expansion and
command substitution (see back quotes) to take place.

 Back ` quotes cause command substitution which allows for a command to be executed
within the line of another command.

When using quotes, they must be entered in pairs or else the shell will not consider the command
complete.

While single quotes are useful for blocking the shell from interpreting one or more characters, the
shell also provides a way to block the interpretation of just a single character called "escaping" the
character. To escape the special meaning of a shell metacharacter, the backslash \ character is used
as a prefix to that one character.

Execute the following command to use back quotes ` (found under the ~ character on some
keyboards) to execute the date command within the line of the echo command:

echo Today is `date`

Your output should be similar to the following:

sysadmin@localhost:~$ echo Today is `date`

Today is Mon Dec 3 21:29:45 UTC 2018

You can also place $(before the command and) after the command to accomplish command

substitution:

echo Today is $(date)

Your output should be similar to the following:

sysadmin@localhost:~$ echo Today is $(date)

Today is Mon Dec 3 21:33:41 UTC 2018

Why two different methods that accomplish the same thing? Backquotes look very similar to
single quotes, making it harder to "see" what a command is supposed to do. Originally, shells
used backquotes; the $(command) format was added in a later version of the Bash shell to make
the statement more visually clear.

If you don't want the backquotes to be used to execute a command, place single quotes around
them. Execute the following:

echo This is the command '`date`'

Your output should be similar to the following:

sysadmin@localhost:~$ echo This is the command '`date`'

This is the command `date`

sysadmin@localhost:~$

Note that you could also place a backslash character in front of each backquote character.
Execute the following:

echo This is the command \`date\`

Your output should be similar to the following:

sysadmin@localhost:~$ echo This is the command \`date\`

This is the command `date`

sysadmin@localhost:~$

Double quote characters don't have any effect on backquote characters. The shell will still use
them as command substitution. Execute the following to see a demonstration:

echo This is the command "`date`"

Your output should be similar to the following:

sysadmin@localhost:~$ echo This is the command "`date`"

This is the command Mon Dec 3 21:37:33 UTC 2018

5.6.6 Step 6
Double quote characters will have an effect on wildcard characters, disabling their special
meaning. Execute the following:

echo D*

echo "D*"

Your output should be similar to the following:

sysadmin@localhost:~$ echo D*

Desktop Documents Downloads

sysadmin@localhost:~$ echo "D*"

D*

sysadmin@localhost:~$

Important

Quoting may seem trivial and weird at the moment, but as you gain more experience working in
the command shell, you will discover that having a good understanding of how different quotes
work is critical to using the shell.

5.7 Control Statements
Typically, you type a single command and you execute it when you press Enter. The Bash shell
offers three different statements that can be used to separate multiple commands typed together.

The simplest separator is the semicolon (;). Using the semicolon between multiple commands

allows for them to be executed one right after another, sequentially from left to right.

The && characters create a logical "and" statement. Commands separated by && are

conditionally executed. If the command on the left of the && is successful, then the command to

the right of the && will also be executed. If the command to the left of the && fails, then the

command to the right of the && is not executed.

The || characters create a logical "or" statement, which also causes conditional execution.

When commands are separated by ||, then only if the command to the left fails, does the

command to the right of the || execute. If the command to the left of the || succeeds, then the

command to the right of the || will not execute.

To see how these control statements work, you will be using two special

executables: true and false. The true executable always succeeds when it executes,

whereas, the false executable always fails. While this may not provide you with realistic

examples of how && and || work, it does provide a means to demonstrate how they work

without having to introduce new commands.

5.7.1 Step 1
Execute the following three commands together separated by semicolons:

echo Hello; echo Linux; echo Student

As you can see the output shows all three commands executed sequentially:

sysadmin@localhost:~$ echo Hello; echo Linux; echo Student

Hello

Linux

Student

sysadmin@localhost:~$

5.7.2 Step 2
Now, put three commands together separated by semicolons, where the first command executes
with a failure result:

false; echo Not; echo Conditional

Your output should be similar to the following:

sysadmin@localhost:~$ false; echo Not; echo Conditional

Not

Conditional

sysadmin@localhost:~$

Note that in the previous example, all three commands still executed even though the first one

failed. While you can't see from the output of the false command, it did execute. However, when

commands are separated by the ; character, they are completely independent of each other.

5.7.3 Step 3
Next, use logical "and" to separate the commands:

echo Start && echo Going && echo Gone

Your output should be similar to the following:

sysadmin@localhost:~$ echo Start && echo Going && echo Gone

Start

Going

Gone

sysadmin@localhost:~$

Because each echo statement executes correctly, a return value of success is provided, allowing
the next statement to also be executed.

5.7.4 Step 4
Use logical "and" with a command that fails as shown below:

echo Success && false && echo Bye

Your output should be similar to the following:

sysadmin@localhost:~$ echo Success && false && echo Bye

Success

sysadmin@localhost:~$

The first echo command succeeds and we see its output. The false command executes with a

failure result, so the last echo statement is not executed.

5.7.5 Step 5
The "or" characters separating the following commands demonstrates how the failure before the
"or" statement causes the command after it to execute; however, a successful first statement
causes the command to not execute:

false || echo Fail Or

true || echo Nothing to see here

Your output should be similar to the following:

sysadmin@localhost:~$ false || echo Fail Or

Fail Or

sysadmin@localhost:~$ true || echo Nothing to see here

sysadmin@localhost:~$

